Режимы шим. ШИМ — широтно-импульсная модуляция

В предыдущей статье вы узнали, . В качестве продолжения, предлагаю узнать, что такое ШИМ в мониторах, как с ним жить и не испортить глаза.

Осторожно, они мерцают!

Все привыкли к мысли, что мерцают только старые большие мониторы на основе электронно-лучевой трубки (ЭЛТ), но на самом деле, для глаз гораздо более вредно мерцание современных ЖК и OLED-дисплеев!

Да, вам не показалось, большинство современных дисплеев мерцают и это мерцание обычно проявляется при понижении яркости .

Посмотрите на эту анимацию, левый символ яркости неприятно мерцает при уровне 50%

И такое можно наблюдать не только на мониторах настольных компьютеров, то же самое происходит и со многими ноутбуками, смартфонами и планшетами.

Что такое ШИМ в мониторах?

Понизить яркость монитора можно двумя способами:

а.) Уменьшить интенсивность свечения лампы подсветки (лампа уменьшает свечение)
б.) Светить с перерывами, чтобы за единицу времени света было меньше (лампа начинает мерцать)

С технической точки зрения оказалось проще сделать так, чтобы яркость регулировалась мерцанием, часть времени лампа горит, а часть времени не светится.

Широтно-импульсная модуляция (ШИМ) - процесс управления мощностью, путём изменения длительности импульсов, при постоянной частоте.

В мониторах с ШИМ при уменьшении яркости экрана уменьшается длительность импульса свечения ламп подсветки или светодиодов, в результате более заметно мерцание , которое может отрицательно повлиять на наше зрение .

На рисунке вы может увидеть сравнение двух способов регулировки яркости:

ШИМ работает следующим образом: на яркости 50% мы половину времени видим импульс света, а вторую половину времени видим черный экран, глаз усредняет увиденное и мы воспринимаем серое свечение. Когда яркость меньше – мерцание заметно больше.

Вот только глазу такое мерцание совсем не идёт на пользу.

Все ли мониторы мерцают?

Производители не спешат указывать в характеристиках, каким образом регулируется яркость и используется ли ШИМ. К счастью, есть мониторы, в которых нет ШИМа , либо мерцание появляется на совсем маленькой яркости.

У таких мониторов иногда в описании есть надпись «Flicker-Free» (переводится «без мерцания») и встречается подобный логотип:

Перед покупкой можно изучить специализированные форумы в поисках нужной модели, но что делать, если вы уже купили монитор который мерцает?

Как узнать, мерцает ли ваш монитор?

Есть очень простой способ узнать, мерцает ли ваш монитор – «карандашный тест ».

Возьмите карандаш в руки и поводите им перед светящимся монитором как веером (в плоскости экрана). Если след от карандаша размыт (выглядит смазанным), то мерцания нет , если же след разделяется (выглядит как набор теней от нескольких карандашей), то ваш монитор мерцает .

На этом видео показан пример проведения «карандашного теста»:

Сделайте проверку на разных уровнях яркости , от 0% до 100%, таким образом можно узнать, какая яркость безопасна для зрения.

Есть более сложные тесты, которые позволяют узнать частоту мерцания, но в большинстве случаев карандашного теста достаточно.

Что делать, если монитор мерцает?

Если вы обнаружили, что ваш монитор мерцает на комфортном уровне яркости, есть способ не испортить глаза:

Настройте яркость с помощью драйвера видеокарты

Качество изображение может стать немного хуже, но глазам станет намного легче.

Нужно настроить яркость монитора, так, чтобы мерцания не было, и, если в итоге яркость слишком большая, уменьшайте яркость в настройках драйвера видеокарты .

Алгоритм настройки простой:

  1. Настройте яркость монитора либо на максимум, либо на уровень, когда мерцание отсутствует;
  2. Зайдите в настройки драйвера видеоадаптера и в них уменьшите яркость до комфортного уровня;
  3. Примените настройки.

Пример настройки яркости

Если возникнут сложности с поиском настроек драйвера – пишите в комментариях, постараюсь помочь.

Заключение

Сегодня вы узнали, что такое ШИМ, чем он опасен для глаз и как свести риски к минимуму .

Пишите, интересны ли вам уроки на тему здоровья и нужны ли подробности по рассмотренным в статье вопросам.

Копирование запрещено , но можно делиться ссылками.

Когда в какой-нибудь литературе мы встречаем незнакомое слово или понятие, мы хотим скорее узнать его определение. Зная точное определение можно дальше проследить сферу использования и методы применения главного действующего лица того или иного понятия. Сегодня мы ближе познакомимся с таким понятием как шим - контроллер.

Понятие шима

Прежде чем дать определение упомянутому словосочетанию, следует узнать или кому-то просто напомнить себе принцип нагревания силовых компонентов радиосхемы. Их сущность заключается в действии нескольких переключательных режимах. Все электросиловые компоненты в подобных радиосхемах всегда пребывают в двух состояниях. Первое - это открытое, а второе раскрытое. В чём разница между этими двумя состояниями? В первом случае компонент обладает нулевым током. Во втором же у компонента нулевое значение напряжения. Конечным результатом взаимодействия электросиловых компонентов с необходимой напряжённостью можно считать получения сигнала той формы, которая нужна согласно установленным правилам.

Шимом же называют специальный модулятор, предназначенный для контролирования времени открытия силового ключа. Время для открытия ключа устанавливается с учётом получаемого напряжения. Получить идеальный вариант сигнала возможно лишь в том случае, если перед преобразованием сигнал без затруднений прошёл все необходимые этапы. Какие это этапы из чего состоит формирование такого сигнала.

Особенности шим - контроллера

Сам процесс создания шим - сигналов очень непростой. Чтобы облегчить этот процесс, были придуманные специальные микросхемы. Именно микросхемы, участвующие в формировании шим - сигналов называют шим - контролёрами. Их существование в большинстве случаев помогает полностью решить проблему с формированием широко — импульсных сигналов. Чтобы легче понять миссию и значимость шим - контролёра, необходимо познакомиться с особенностями его строения. На сегодняшний день известно, что любой шим - контролёр, активно использующийся в электронике, обладает следующими составляющими:

  • Вывод питания. Несёт большую ответственность за электрическое питание всех существующих схем. Нередко вывод питания путают с выводом контроля питания . Важно знать, что несмотря на похожие слова в названии, эти два понятия имеют совершенно разную характеристику. Это ещё раз наглядно докажет знакомство с выводом контроля питания.
  • Вывод контроля питания. Эта составляющая часть микросхемы следит за состоянием показателей напряжения прямо на выводе микросхемы. Главная задача вывода контроля питания - это не допустить превышение расчётной отметки. Существует одна серьёзная опасность, а именно снижения напряжения на выходе. Если напряжения снижено, транзисторы начинают открываться наполовину. Из-за неполного открытия они быстро нагреваются и в конечном счёте могут быстро выйти из строя. Поэтому умеренное напряжение - это залог долгой работы транзисторов микросхемы шим — контроллеров.
  • общий выход. Третий главный элемент схемы имеет форму ножки. Эта ножка, в свою очередь, подключена к общему проводу схемы, которые отвечает за питания всей системы.

Все три составляющих очень важны. Если хотя бы один из элементов по какой-то причине выходит из строя, работа всей микросхемы заметно ухудшается или совершенно прекращается.

Системы управления микросхемами

Важно знать не только из чего состоят микросхемы шим - контроллеров, но и какие существуют виды самих систем. В настоящее время доступно две основных системы широко — импульсной модуляции в которых шим - контроль принимает активное участие. Вот их некоторые особенности:

А вот получить на выходе нужный сигнал можно как с программным, так и аппаратным методом.

Аппаратный метод. Получение сигнала этим способом происходит с помощью специального таймера, который изначально встроен в цифровую систему. Такой таймер генерирует или способствует включению импульсов на определённых этапах вывода сигнала.

Программный метод. В этом случае получения сигналов происходит посредством выполнения специальных программных команд. У программного способа больше возможностей , нежели у аппаратного. В то же время использования этого метода получения сигналов может занять много памяти.

А что можно сказать о «сердце системы». У шима - контролёра, который активно применяется в цифровых модуляторах есть свои преимущества. Стоит помнить о следующих:

  • Низкая стоимость.
  • Стабильная работа.
  • Высокая надёжность.
  • Возможность экономить энергию.
  • высокая эффективность преобразования сигналов.

Все перечисленные преимущества делают цифровую систему более востребованной среди потребителей.

  • Аналоговый модулятор. Принцип работы аналогового модулятора в корне отличается от принципа работы цифрового Вся суть работы такого модулятора состоит в сравнении двух сигналов. Эти сигналы отличаются между собой порядком частоты. Операционный усилитель - это главный элемент аналогового модулятора, который отвечает за сравнение сигналов. Сравнение сигналов осуществляется на выходе. В качестве сравнения усилитель используется два сигнала. Первый - пилообразное напряжение высокой частоты. Второй сигнал - низкочастотное напряжение. После сравнения на свет появляются импульсы прямоугольной формы. Длительность импульсов напрямую зависят от модулирующего сигнала .

Шим - контроллер в импульсных блоках питания

Многие электрические приборы сегодня оснащены специальными блоками питания. Эти блоки помогают преобразить один вид напряжения в другой. В процессе преобразования энергии принимают участия два устройства:

  • Импульсный блок питания.
  • аналоговые трансформаторные устройства.

В этой статье мы больше внимания обратим на первое устройство, так как именно в нём используется шим - контролёр.

Схема работы импульсного блока питания

Это устройство появилось на свет всего лишь несколько десятилетий назад. Однако уже успело стать популярным и востребованным. Импульсный блок питания состоит из следующих деталей:

  1. Фильтрующего конденсата.
  2. Ключевого силового транзистора.
  3. Сетевого выпрямителя, состоящего из нескольких элементов.
  4. Выпрямительных диодов выходной системы.
  5. Силовой дроссели. Дроссель помогает корректировать возникающее напряжение.
  6. Импульсивного источника питания. Именно отсюда напряжение преобразовывается в силовую цепь.
  7. Цепей управления выходного напряжения.
  8. Накопительной фильтрующей ёмкости;
  9. Оптопара;
  10. Задающего генератора.
  11. схемы обратной связи.

Зная состав импульсного блока, следует ознакомиться с принципом его работы.

Принцип работы импульсного блока

Принцип работы импульсного блока заключается в выдаче стабилизированного питающего напряжения на основе принципа взаимодействия элементов инертной системы. Вот поэтапные шаги, наглядно демонстрирующие всю суть деятельности такого блока питания:

  • Передача сетевого напряжения на выпрямитель (осуществляется при помощи специальных проводов).
  • С помощью фильтра выпрямителя происходит сглаживание напряжения. В этом процессе принимают участие и конденсаторы.
  • с помощь диодного входного моста выпрямляются синусоиды. Далее при участии транзисторной системы проходящие синусоиды должны преобразоваться в высокочастотные импульсы. Зачастую импульсы имеют прямоугольную форму.

Но возникает вопрос, какую роль в импульсном блоке играют шим - контролёры. Мы постараемся дать ответ на него в следующем подзаголовке.

Роль шима - контроллера в работе импульсного блока

Шим - контроллеры играют важную роль в импульсном блоке. Он отвечает за процессы, связанные с широтно — импульсной модуляцией. Шим - контролёр способствует выработке импульсов, у которых одинаковая частота, но в то же время разная длительность включения. Все подаваемые импульсы соответствуют определённой логической единице. У импульсов одинаковая не только частота, но и одинаковая величина амплитуды. Продолжительность функционирования логической единицы может меняться в процессе её работы. Такие перемены помогают наилучшим образом управлять работой электронной системы.

Таким образом, шим - контролёр - одна из важных цепочек, участвующих в работе импульсного блока. В некоторых видах помимо шим - контролёра благополучное функционирование блока питания обеспечивает импульсный трансформатор и специальный каскад силовых ключей.

А в каких сферах используются импульсные блоки питания? В первую очередь, в электронике. Об этом речь пойдёт далее.

Особенности работы микросхемы или как может работать ноутбук

Компьютерный блок питания и роль шим - контролёра в нём Все современные компьютеры, в том числе и ноутбуки, оснащены импульсными блоками питания. Установленные в ноутбуке или в обычном компьютере блоки содержат индивидуальную микросхему шим - контролёра. Стандартной микросхемой считают микросхему TL494CN.

Прежде всего стоит сказать о главной задаче микросхемы TL494CN. Итак, главной задачей схемы является широтно — импульсная модуляция. Другими словами микросхема вырабатывает импульсы напряжения. Одни импульсы регулируемы, другие нет. В микросхеме предусмотренно примерно 6 способов выводов сигналов. Упомянем некоторые интересные подробности каждого вывода микросхемы ноутбука.

Первый вывод. Считается положительным входом усилителя сигнала ошибки. Уровень напряжения на первом выводе оказывает значительное влияние на функционирование последующих выводов. При низком напряжении при втором выводе у выхода усилителя ошибки будут низкие показатели. И напротив, при повышенном напряжении показатели усилителя ошибки повысятся .

Второй вывод. Второй же вывод является напротив отрицательным выходом для усилителя. Здесь показатели напряжения немного по-иному оказывают своё влияние на усилитель. Так, при высоком напряжении (выше чем на первом выводе) у выхода усилителя низкие показатели. В случае низкого напряжения усилитель обладает высокими данными.

Третий вывод. Служит неким контактным звеном. Перемены в уровне напряжения зависят от двух диодов, которыми наделен внутренний усилитель. Во время изменения уровня сигнала хотя бы на одном диоде меняется уровень напряжения всего усилителя. В некоторых случаях третий вывод обеспечивает скорость изменения ширины импульсов.

Четвёртый вывод. Способен управлять диапазон скважности всех выходных импульсов. Уровень поступаемого напряжения в четвёртом выводе влияет на ширину импульсов в микросхеме шим - контролёра.

Пятый вывод. Перед пятым выводом стоит немного другая задача. Он присоединяет врямязадующий конденсатор к заданной микросхеме. Ёмкость присоединённого конденсата оказывает значительное влияние на частоту выходных импульсов шим - контролёра.

Шестой вывод. Служит для подключения времязадающего регистра, который также влияет на частоту.

Все эти шесть выводов способствуют выполнению главной задачи, которая поставлена перед микросхемой шим - контролёра - выход импульсов с широкой модуляцией. А это действие, в свою очередь, влияет на работу импульсного блока, а значит и на работу ноутбука.

Если шим - контролёр выходит из строя

Временами шим - контролёры их схемы и источник питания (в том числе и встроенные в ноутбук) могут ломаться и выходить из строя. В таких случаях понадобится выявить неисправности (в одних случаях проверять необходимо источник питания, в других проверять стоит саму схему). Для этой цели были разработаны мультиметры . Мультиметры тщательно исследуют работоспособность шим - контролёров и при необходимости помогают устранить неисправности. Самыми распространёнными причинами, почему следует проверять эти устройства, считают нестабильную работу платы и изменения показателей напряжения. Если их устранить, техника будет работать.

:: Помощь

ШИМ (PWM) контроллер - принцип действия

Типичная микросхема контроллера широтно-импульсной модуляции имеет следующие выводы.

Общий вывод (GND) . Тут говорить нечего. Это ножка, которая подключается к общему проводу схемы питания контролера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Какая минимальная длинна импульса возможна в шим контроллерах (минимальный коэф фициент заполнения)? На практике получается что, к примеру, sg3525 запускается с минимальной шириной примерно 1 микросекунда. Есть ли методика расчета этого параметра? Очень актуально при разработке импульсных блоков питания с регулировкой напряжения от нуля вольт.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех...


Обзор схем бестрансформаторных источников питания...

Прямоходовый однотактный импульсный преобразователь напряжения, источн...
Как сконструировать прямоходовый импульсный преобразователь. В каких ситуациях о...


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


Очередное электронное устройство широкого применения.
Представляет собой мощный ШИМ (PWM) регулятор с плавным ручным управлением. Работает на постоянном напряжении 10-50V (лучше не выходить за диапазон 12-40V) и подходит для регулирования мощности различных потребителей (лампы, светодиоды, двигатели, нагреватели) с максимальным током потребления 40А.

Прислали в стандартном мягком конверте




Корпус скрепляется на защёлках, которые легко ломаются, поэтому вскрывать аккуратно.


Внутри плата и снятая ручка регулятора


Печатная плата - двусторонний стеклотекстолит, пайка и монтаж аккуратные. Подключение через мощный клеммник.




Вентиляционные прорези в корпусе малоэффективны, т.к. почти полностью перекрываются печатной платой.


В собранном виде выглядит примерно так


Реальные размеры чуть больше заявленных: 123x55x40мм

Принципиальная электрическая схема устройства


Заявленная частота ШИМ 12kHz. Реальная частота изменяется в диапазоне 12-13kHz при регулировании выходной мощности.
При необходимости, частоту работы ШИМ можно уменьшить, подпаяв нужный конденсатор параллельно С5 (исходная ёмкость 1nF). Увеличивать частоту нежелательно, т.к. увеличатся коммутационные потери.
Переменный резистор имеет встроенный выключатель в крайнем левом положении, позволяющий отключать устройство. Также на плате расположен красный светодиод, горящий в рабочем состоянии регулятора.
С микросхемы ШИМ контроллера маркировка зачем-то старательно затёрта, хотя нетрудно догадаться, что стоит аналог NE555:)
Диапазон регулирования близок к заявленным 5-100%
Элемент CW1 похож на стабилизатор тока в корпусе диода, но точно не уверен…
Как и на большинстве регуляторов мощности, регулирование осуществляется по минусовому проводнику. Защита от КЗ отсутствует.
На мосфетах и диодной сборке маркировка изначально отсутствует, они стоят на индивидуальных радиаторах с термопастой.
Регулятор может работать на индуктивную нагрузку, т.к. на выходе стоит сборка защитных диодов Шоттки, подавляющая ЭДС самоиндукции.
Проверка током 20А показала, что радиаторы греются незначительно и могут вытянуть больше, предположительно до 30А. Измеренное суммарное сопротивление открытых каналов полевиков всего 0,002 Ом (падает 0,04В на токе 20А).
Если снизить частоту ШИМ, вытянут все заявленные 40А. Жаль проверить не смогу…

Выводы можете сделать сами, мне устройство понравилось:)

Планирую купить +56 Добавить в избранное Обзор понравился +38 +85

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП - одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер - это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению - это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» - это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция - это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами - за счёт сглаживания.

Вывод: ШИМ-контроллер - устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов - от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T - это период сигнала,

Часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения - 0.25, в процентах - 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного - с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Pпотерь=(Uвх-Uвых)*I

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное - 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

n=Pполезная/Pпотр

n=((12В*1А)/(15В*1А))*100%=(12Вт/15Вт)*100%=80%

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами , которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) - 2 ключа, мостовые - 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей - один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор - первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

Интересно:

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример - 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме - чаще всего 8 выводов, а в еще более культовой - TL494 - 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

    GND - общий вывод соединяется с минусом схемы или с землей.

    Uc (Vc) - питание микросхемы.

    Ucc (Vss, Vcc) - Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

    OUT - как видно из название - это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) - для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы - с одним и двумя выходными выводами соответственно. Это важно.

    Vref - опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

    ILIM - сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

    ILIMREF - на ней устанавливается напряжение срабатывания ножки ILIM

    SS - формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

    RtCt - выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

    CLOCK - тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

    RAMP - это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс - основа для ШИМ-регулирования.

    INV и NONINV - это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV - тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу - GND.

    EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

    TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются . Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 - обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 - обзор

Другой популярной ШИМ является микросхема 3843 - на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Интересно:

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку - дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

Понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

© 2024 sukko-kurort.ru
Windows. Драйверы. Ликбез. Социальные сети. Software. Server