Основные шины компьютера. Системная шина Что такое пропускная шина процессора

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

Центральный процессор компьютера имеет ряд технических характеристик, которые определяют самую главную характеристику любого процессора - его производительность и о значении каждой из них полезно знать. Почему? Чтобы в дальнейшем хорошо ориентироваться в обзорах и тестированиях, а также маркировках ЦП. В данной статье я попытаюсь раскрыть основные технические характеристики процессора в понятном для новичков изложении.

Основные технические характеристики центрального процессора:

  • Частота и разрядность системной шины;

Рассмотрим подробнее данные характеристики

Тактовая частота

Тактовая частота - показатель скорости выполнения команд центральным процессором. Такт - промежуток времени, необходимый для выполнения элементарной операции.

В недалеком прошлом тактовую частоту центрального процессора отождествляли непосредственно с его производительностью, то есть чем выше тактовая частота ЦП, тем он производительнее. На практике имеем ситуацию, когда процессоры с разной частотой имеют одинаковую производительность, потому что за один такт могут выполнять разное количество команд (в зависимости от конструкции ядра, пропускной способности шины, кэш-памяти).

Тактовая частота процессора пропорциональна частоте системной шины (см. ниже).

Разрядность

Разрядность процессора - величина, которая определяет количество информации, которое центральный процессор способен обработать за один такт.

Например, если разрядность процессора равна 16, это значит, что он способен обработать 16 бит информации за один такт.

Думаю, всем понятно, что чем выше разрядность процессора, тем большие объемы информации он может обрабатывать.

Обычно, чем больше разрядность процессора, тем его производительность выше.

В настоящее время используются 32- и 64-разрядные процессоры. Разрядность процессора не означает, что он обязан выполнять команды с такой же самой разрядностью.

Кэш-память

Первым делом ответим на вопрос, что такое кэш-память?

Кэш-память – это быстродействующая память компьютера, предназначена для временного хранения информации (кода выполняемых программ и данных), необходимых центральному процессору.

Какие данные хранятся в кэш-памяти?

Наиболее часто используемые.

Какое предназначение кэш-памяти?

Дело в том, что производительность оперативной памяти, сравнительно с производительностью ЦП намного ниже. Получается, что процессор ждет, когда поступят данные от оперативной памяти – что понижает производительность процессора, а значит и производительность всей системы. Кэш-память уменьшает время ожидания процессора, сохраняя в себе данные и код выполняемых программ, к которым наиболее часто обращался процессор (отличие кэш-памяти от оперативной памяти компьютера – скорость работы кэш-памяти в десятки раз выше).

Кэш-память, как и обычная память, имеет разрядность. Чем выше разрядность кэш-памяти тем с большими объемами данных может она работать.

Различают кэш-память трех уровней: кэш-память первого (L1), второго (L2) и третьего (L3). Наиболее часто в современных компьютерах применяют первые два уровня.

Рассмотрим подробнее все три уровня кэш-памяти.

Кэш-память первого уровня является самой быстрой и самой дорогой памятью.

Кэш-память первого уровня расположена на одном кристалле с процессором и работает на частоте ЦП (отсюда и наибольшее быстродействие) и используется непосредственно ядром процессора.

Емкость кэш-памяти первого уровня невелика (в силу дороговизны) и исчисляется килобайтами (обычно не более 128 Кбайт).

Кэш-память второго уровня - это высокоскоростная память, выполняющая те функции, что и кэш L1. Разница между L1 и L2 в том, что последняя имеет более низкую скорость, но больший объем (от 128 Кбайт до 12 Мбайт), что очень полезно для выполнения ресурсоемких задач.

Кэш-память третьего уровня расположена на материнской плате. L3 значительно медленнее L1и L2, но быстрее оперативной памяти. Понятно, что объем L3 больше объема L1и L2. Кэш-память третьего уровня встречается в очень мощных компьютерах.

Количество ядер

Современные технологии изготовления процессоров позволяют разместить в одном корпусе более одного ядра. Наличие нескольких ядер значительно увеличивает производительность процессора, но это не означает что присутствие n ядер дает увеличение производительности в n раз. Кроме этого, проблема многоядерности процессоров заключается в том, что на сегодняшний день существует сравнительно немного программ, написанных с учетом наличия у процессора нескольких ядер.

Многоядерность процессора, прежде всего, позволяет реализовать функцию многозадачности: распределять работу приложений между ядрами процессора. Это означает, что каждое отдельное ядро работает со “своим” приложением.

Частота и разрядность системной шины

Системная шина процессора (FSB - Front Side Bus) - это набор сигнальных линий для обмена информацией ЦП с внутренними устройствами (ОЗУ, ПЗУ, таймер, порты ввода-вывода и др.) компьютера. FSB фактически соединяет процессор с остальными устройствами в системном блоке.

В состав системной шины процессора входят шина адреса, шина данных и шина управления.

Главными характеристиками шины являются ее разрядность и частота работы. Частота шины - это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера.

Естественно, чем выше разрядность и частота системной шины, тем выше производительность процессора.

Высокая скорость передачи данных шины обеспечивает возможность быстрого получения процессором и устройствами компьютера необходимой информации и команд.

Здесь нужно отметить один важный пункт.

Частота работы всех современные процессоров в несколько раз превышает частоту системной шины, поэтому процессор работает на столько, на сколько ему это позволяет системная шина. Величина, на которую частота процессора превышает частоту системной шины, называется множителем.

xiod.ru

Системная шина - что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И ее частота является важным параметром, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является пропускная способность. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы. Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.

pc-information-guide.ru

Процессор является одним из ключевых компонентов компьютера, он осуществляет вычисления и выполняет команды, получаемые от программ. В современном мире есть два производителя компьютерных процессоров, пользующихся наибольшим авторитетом, это Amd и Intel. Чтобы при выборе компьютера сделать все правильно, необходимо детально ознакомиться с техническими характеристиками.

Тактовая частота и количество ядер

Тактовой частотой называют параметр, который измеряется в гигагерцах, к примеру, 2,21ГГц говорит о том, что конкретный процессор в течение одной секунды способен выполнить 2 216 000 000 операций. Таким образом, более высокая таковая частота позволяет быстрее обрабатывать данные. Это один из важнейших параметров, на который следует обращать внимание, выбирая процессор.

Не менее важно и число ядер, дело в том, что тактовую частоту на данном этапе развития больше увеличить нельзя, это побудило производить продолжить развитие в направлении параллельных вычислений, выражающемся в увеличении количества ядер. Число ядер информирует о том, какое количество программ можно запустить одновременно, не теряя быстродействие. Однако стоит учитывать, что в случае оптимизации программы под два ядра, то даже при их большем количестве, компьютер не сможет их полноценно использовать. [ содержание ]

Кэш и частота шины процессоров

Частота шины демонстрирует скорость передачи входящей и исходящей из процессора информации. Чем больше этот показатель, тем обмен информацией происходит быстрее, в качестве единиц измерения здесь выступают гигагерцы. Большую значимость имеет кэш процессора, представляющий собой высокоскоростной блок памяти. Он располагается непосредственно на ядре и служит для повышения производительности, так как в нём данные обрабатываются со значительно большей скоростью, чем в случае с оперативной памятью. Есть три уровня кэш памяти:

  • L1 – первый уровень самый незначительный по объёму, но наиболее быстрый, его размер варьируется в пределах 8 – 128 Кб.
  • L2 – второй уровень, намного медленнее первого, но превышает его по объёму, здесь размер варьируется в пределах 128 – 12288 Кб.
  • L3 – третий уровень, проигрывает в скорости первым двум уровням, но самый объёмный, к слову он и вовсе может отсутствовать, так как предусмотрен для специальных редакций процессоров или серверных решений. Его размер достигает 16384 Кб, он может присутствовать в таких процессорах, как Xeon MP, Pentium 4 Extreme Edition или Itanium 2.

Прочие параметры процессоров

Менее значимыми, но от того не теряющими актуальность при выборе процессора являются такие характеристики как сокет и тепловыделение. Сокетом называют разъём, куда устанавливается процессор в материнской плате, к примеру, если на маркировке процессора представлен сокет АМЗ, то нужна соответствующая материнская плата с идентичным сокетом. По показателям тепловыделения можно определить степень нагревания процессора в ходе работы. Это будет прямым указанием к выбору соответствующей системы охлаждения. Данный показатель измеряют в ватах, и он варьируется в пределах 10 – 165Вт.

Такая характеристика, как поддержка разнообразных технологий, определяет набор команд, предназначенных для улучшения производительности, к примеру, это может быть технология SSE4.Она представляет собой набор из пятидесяти четырёх команд, призванных увеличивать производительность процессоров в процессе работы с медиа контентом, игровыми приложениями задачами трёхмерного моделирования.

Масштаб технологий, определяемый размером полупроводниковых элементов, называется техническим процессом. Полупроводниковые элементы составляют основу внутренней цепи процессора, состоящей из транзисторов, которые соединены между собой соответствующим образом. В ходе совершенствования технологий и пропорционального уменьшения в размерах транзисторов, повышаются рабочие характеристики процессоров. К примеру, ядро Willamette, выполненное в соответствии с техпроцессом 0.18 мкм, обладает 42 000 000 транзисторов. В это же время ядро Prescott, соответствующее техпроцессу 0.09 мкм, располагает 125 000 000 транзисторов. [ содержание ]

Сравнение современных процессоров

Попробуем применить полученные знания на практике и сравнить два современных процессора, в качестве примера рассмотрим AMD FX-8150 Zambezi и Intel Core i5-3570K Ivy Bridge. В данном случае AMD может похвастаться более высокой тактовой частотой в 3600МГц, в то время как Intel ограничивается 3400ГГц. Это характеризует AMD как более быстродействующий процессор. Что касается количества ядер, то здесь AMD опять же лидирует с 8 ядрами, а вот у Intel всего 4 ядра, однако это очень скользкий момент, ведь приложения могут быть не оптимизированы под работу даже с 4-я ядрами, не то что с 8-ю. В том, что касается объёма кэша, то здесь Intel также значительно проигрывает конкуренту, самый большой, то есть кэш 3-го уровня L3 здесь всего 6144 Кб, в то время как у AMD этот показатель равен 8192 Кб. Объемы кэша второго уровня L2 отличаются еще более кардинально: 1024 Кб у Intel против 8192 Кб у конкурента. Опираясь на эти ключевые характеристики и надо выбирать процессор. В нашем случае я бы отдал предпочтение AMD FX-8150 Zambezi.

Теперь вы знаете все ключевые параметры и сможете выбрать процессор, который вам подойдет.

myblaze.ru

Ремонт компьютеров и ноутбуков в Харькове

Подробности Опубликовано 08 Декабрь 2013 Автор: Роман

Материнская плата - это печатная плата (PCB), которая соединяет процессор, память и все ваши платы расширения вместе для полноценной работы компьютера. При выборе материнской платы необходимо учитывать ее форм-фактор. Форм-фактор - это мировой стандарт, определяющий размер материнской платы, расположение интерфейсов, портов, сокетов, слотов, место крепления к корпусу, разъем для подключения блока питания.

Форм-фактор

Большинство материнских плат, сделанные в настоящее время являются ATX, такие материнские платы имеют размеры 30.5 x 24.4 см. Немного меньше (24.4 x 24.4 см) форм-фактор mATX. Материнские платы mini-ITX имеют совсем скромные размеры (17 х 17 см). Материнская плата ATX имеет стандартные разъемы, такие как PS/2 порты, порты USB, параллельный порт, последовательный порт, встроенный в материнскую плату биос и т.д. ATX материнская плата устанавливается в стандартную корпус.

Чипсет материнской платы

Как правило, в материнскую плату установлены различные слоты и разъемы. Чипсет - это все микросхемы, имеющиеся на материнской плате, которые обеспечивают взаимодействие всех подсистем компьютера. Основными производителями чипсетов на данный момент являются компании Intel, nVidia и ATI (AMD). В состав чипсета входят северный и южный мост.

Схема чипсета Intel P67

Северный мост предназначен для поддержки видеокарты и оперативной памяти и непосредственной работы с процессором. Кроме того, северный мост контролирует частоту системной шины. Однако сегодня часто контроллер встраивается в процессор, это значительно снижает тепловыделение и упрощает функционирование системных контроллеров

Южный мост обеспечивает функции ввода и вывода, и содержащий контроллеры устройств расположенных на периферии, таких как аудио, жёсткий диск и прочие. Также в нём содержаться контроллеры шин, способствующие подключению периферийных устройств, к примеру, USB или шины PCI.

Скорость работы компьютера зависит от того, насколько согласовано взаимодействие чипсета и процессора. Для большей эффективности процессор и чипсет должны быть от одного производителя. Кроме того, необходимо учитывать, что чипсет должен соответствовать объему и типу оперативной памяти.

Сокет процессора

Soket - это вид разъёма в материнской карте, который будет соответствовать разъёму вашего процессора и предназначенный для его подключения. Именно разъём сокета разделяет материнские платы.

  • Сокеты начинающиеся на AM, FM и S поддерживают процессоры фирмы AMD.
  • Сокеты начинающиеся на LGA имеют поддержку процессоров фирмы Intel.

Какой именно тип сокета соответствует вашему процессору, вы узнаете из инструкции к самому процессору, а вообще выбор материнской платы происходит одновременно с выбором процессора, их как бы подбирают друг для друга.

Слоты оперативной памяти

При выборе материнской платы большое значение имеет тип и частота оперативной памяти. На данный момент используются память DDR3 с частотой 1066, 1333, 1600, 1800 или 2000 МГц, до нее была DDR2, DDR и SDRAM. Память одного типа не удастся подключить к материнской плате, если ее разъемы предназначены для памяти другого типа. Хотя на данный момент существуют модели материнских плат со слотами и для DDR2, и для DDR3. Несмотря на то, что оперативная память подключиться к материнской плате, предназначенной для большей частоты, лучше этого не делать, так как это негативно скажется на работе компьютера. Если в будущем предполагается увеличить объем оперативной памяти, то необходимо выбирать материнскую плату с большим количеством разъемов для нее (максимальное количество – 4).

PCI слот

В слот PCI можно подключать карты расширения, такие как звуковая карта, модем, ТВ-тюнеры, сетевая карта, карта беспроводной сети Wi-Fi и т.д. Хотим отметить, что чем больше данных слотов, тем больше дополнительных устройств вы сможете подключить к материнской плате. Наличие двух и более одинаковых PCI-E x16 слотов для подключения видеокарт говорит о возможности их одновременной и параллельной работы.

В виду того, что современные дополнительные устройства включают в себя системы охлаждения и просто имеют габаритный вид, они могут мешать подключению в соседний слот иного устройства. Поэтому даже если вы не собираетесь подключать к компьютеру кучу внутренних дополнительных плат, всё равно, стоит выбирать материнскую плату с как минимум 1-2 слотами PCI, чтобы вы смогли без проблем подключить даже минимальный набор устройств.

PCI Express

Слот PCI Express необходим для подключения PCI-E видеокарты. Некоторые платы, имеющие 2 и более разъема pci-e поддерживают конфигурацию SLI или Crossfire, для подключения нескольких видеокарт одновременно. Следовательно, если необходимо подключить одновременно две или три одинаковых видеокарты, например, для игр или работы с графикой, необходимо выбирать материнскую плату с соответствующим количеством слотов типа PCI Express x16.

Частота шины

Частота шины - это общая пропускная способность материнской платы, и чем она выше, тем будет быстрее производительность всей системы. Учтите, что частота шины процессора должна соответствовать частоте шины материнской платы, в противном случае процессор с частотой шины выше, поддерживаемой материнской платой, работать не будет.

Разъёмы для жёстких дисков

Самым актуальным на сегодняшний день является SATA разъём для подключения жёстких дисков, который пришёл на смену старому разъёму IDE. В отличие от ИДЕ, САТА имеет более высокую скорость передачи данных. Современные разъёмы SATA 3 поддерживают скорость в 6 Гб/с. Чем больше SATA разъёмов, тем больше жёстких дисков вы сможете подключить к системной плате. Но учтите, что количество жёстких дисков может быть ограничено корпусом системного блока. Поэтому если вы хотите установить более двух винчестеров, то убедитесь, что такая возможность есть в корпусе.

Несмотря на то, что разъём SATA активно вытесняет IDE, новые модели материнских карт всё равно комплектуют разъёмом IDE. В большей степени это делается для удобства апгрейда, то есть проведя обновление комплектующих компьютера, дабы сохранить всю имеющуюся информацию на старом жёстком диске с IDE разъёмом и не испытывать сложностей с её копированием.

Если вы покупаете новый компьютер и планируете использовать старый жёсткий диск, то максимум рекомендуем его задействовать как дополнительный винчестер. Лучше всё-таки имеющуюся информацию переписать на новый HDD с SATA подключением, так как старый будет заметно тормозить работу всей системы.

USB разъёмы

Обратите внимание на количество USB разъёмов на задней панели материнской карты. Чем их больше, тем соответственно лучше, так как практически все существующие дополнительные устройства имеют именно USB разъём для подключения к компьютеру, а именно: клавиатуры, мышки, флешки, мобильный телефон, Wi-Fi адаптер, принтер, внешний жёсткий диск, модем и т.п. Чтобы задействовать все эти устройства необходимо достаточное количество разъёмов для каждого устройства.

USB 3.0 - это новый стандарт передачи информации через USB интерфейс, скорость передачи данных достигает до 4.8 Гб/с.

Звук

Каждая материнская плата имеет звуковой контроллер. Если вы любитель послушать музыку, то рекомендуем выбирать материнскую плату с большим количеством звуковых каналов.

  • 2.0 – звуковая карта поддерживает стереозвук, две колонки или наушники;
  • 5.1 – звуковая карта поддерживает аудиосистему объёмного звука, а именно 2 передних динамика, 1 центральный канал, 2 задних динамика и сабвуфер;
  • 7.1 – поддержка системы объёмного звука, имеет такую же архитектуру как для работы системы 5.1, только добавляются боковые динамики.

Если материнская карта имеет поддержку многоканальной аудиосистемы, то вы с лёгкостью сможете построить домашний кинотеатр на основе компьютера.

Дополнительные функции

Вентиляторы можно подключить к любой материнской плате, которая имеет разъёмы для вентиляторов (кулеров), для обеспечения надёжного и хорошего охлаждения всех внутренних комплектующих в системном блоке. Рекомендуется наличие нескольких таких разъёмов.

Ethernet - это контроллер, установленный на материнской плате, с помощью него осуществляется подключение к интернету. Если вы планируете активно пользоваться интернетом, и ваш Интернет-провайдер поддерживает скорость в 1 Гбит/с, то покупайте материнскую плату с поддержкой такой скорости. А вообще, если вы покупаете материнскую плату на довольно длительный промежуток времени, и в ближайшие 3 года не планируете её менять, то лучше сразу брать карту с поддержкой гигабитной сети, учитывая темпы развития технологий.

Wi-Fi встроенный модуль, понадобится поэтому если у вас есть WI-FI роутер. Купив такую материнскую плату, вы избавитесь от лишних проводов, но правда вай-фай не сможет порадовать вас высокой скоростью, как Ethernet.

Bluetooth - весьма полезная штука, так как благодаря блютуз контролеру Вы сможете не только загружать контент с компьютера на свой мобильный телефон, а так же подключить беспроводные мышку и клавиатуру и даже Bluetooth-гарнитуру, тем самым избавившись от проводов.

RAID контроллер - с ним можно не бояться за сохранность файлов на компьютере в случае поломки винчестера. Для включения этой технологии необходимо установить. как минимум 2 одинаковых жестких диска в режиме зеркала, и все данные с одного накопителя будут автоматически копироваться на другой.

Твердотельные конденсаторы - это использование более стойких к нагрузке и температуре конденсаторов, содержащих полимер. У них больший срок службы и они лучше переносят высокую температуру. Практически все производители уже перешли на них при изготовлении материнских плат.

Цифровая система питания - обеспечивает питание процессора и остальной схемы без перепадов и в достаточном объеме. На рынке присутствуют как дешевые цифровые блоки, которые ничем не лучше аналоговых, так и более дорогие и умелые. Понадобится, если у Вас слабый блок питания или некачественная электросеть, и Вы не пользуетесь UPS, или будете разгонять процессор.

Кнопки для быстрого разгона - позволяют повышать частоту шины или подаваемое напряжение одним нажатием. Будет полезна оверклокерам.

Защита от статического напряжения - эта проблема кажется несущественной, пока вы зимой не потянитесь к своему любимцу, предварительно сняв свитер. И хотя это происходит так нечасто, все же очень обидно сжечь плату одним неосторожным движением.

Military Class - это прохождение тестирования платы в условиях повышенной влажности, сухости, холода, жары, перепада температуры и других стресс-тестов. Если материнская плата прошла все эти тесты, значит вывести из строя может разве что разряд молнии. Существую разные классы, отличающиеся набором пройденных испытаний.

Многобиосность сохранит Вам деньги и нервы после неудачных опытов с BIOS или UEFI. В противном случае, вы получаете нерабочую плату. И для ее восстановления понадобится найти другую рабочую материнскую плату, желательно такого же типа. В многобиосных платах можно просто переключиться на резервную UEFI. В некоторых платах это реализовано как откат до изначального UEFI. Очень пригодится для любителей экспериментов.

«Разогнанные» порты USB или LAN - это технология, встречающаяся практически на всех материнских платах. Заключается в том, что скорость USB увеличивается только при определенных условиях. А увеличение скорости сети LAN вы заметите только при уменьшении pingа в сетевых играх

itcom.in.ua

Как правильно выбрать материнскую плату и процессор

Распечатать запись

Несомненно, одними из важнейших элементов, из которых состоит компьютер, являются процессор и материнская плата, причем вторая является основной платформой для компьютера. Поэтому к процессу выбора материнской платы нужно подходить очень тщательно, так как от этого напрямую зависит эффективность работы всей системы. Еще десять лет назад, материнская плата была лишь основой компьютерной системы, которая объединяла все устройства и обеспечивала правильное и совместное их функционирование. Сейчас же в «материнку» могут быть встроены как звуковая карта, так и процессор графического ускорителя, но об этом чуть позже. Так как же выбрать материнскую плату и процессор для нее, давайте разберемся поподробнее.

Материнская плата

При выборе материнской платы, основное внимание необходимо обращать на ее назначение, сокет для подключения, размер, частоту шины и чипсет. Обо всем об этом по порядку чуть ниже.

Прежде чем выбирать материнскую плату, необходимо определиться с ее назначением, то есть для каких нужд она вам нужна. Первый вариант для работы, второй для развлечений, просмотра фильмов, компьютерных игр. Для работы можно выбирать материнскую плату средних параметров. Такая будет стоить недорого, однако работоспособность компьютера будет на уровне. Игровой вариант будет стоить дороже, так как для современных игр требования к системе будут повышенные.

Материнские платы существуют различных размеров. Стандартная «материнка» (ATX) имеет размер равный 12×9,62 дюйма. Также существуют micro-ATX, flex-ATX, mini-ITX. Стоит запомнить, что чем меньше форм фактор материнской платы, тем меньше ее производительность и функциональность. К примеру, на материнской плате типа mini-atx, разъемов для подключения дополнительных модулей будет меньше, чем на плате типа ATX, да и греться она будет соответственно больше.

Socket – это разъем на материнской плате компьютера, при помощи которого обеспечивается правильная работа процессора с устройством. Сокет может быть различной архитектуры, к примеру, Socket775 или Socket1155. Именно по причине различной архитектуры гнезда, первой необходимо приобретать материнскую плату, а потом уже процессор.

Чипсет – это набор логических микросхем, который обеспечивает совместимость и управление всех устройств между собой. Чипсет состоит из Северного и Южного мостов. Северный мост предназначен для совместной работы процессора компьютера с видеокартой системы и ее оперативным запоминающим устройством. Также этот мост задает частоту специальной шины FSB. Если Северный мост обеспечен радиатором охлаждения, то это только плюс. Южный мост обеспечивает совместимость и правильную работоспособность процессора с флешками, винчестерами, разъемами USB и прочими. Медный радиатор является плюсом.

Системная шина FSB характеризуется частотой. При выборе материнской платы, необходимо, чтобы частота шины была совместима с частотой FSB шины процессора. Как правило, шина материнской платы поддерживает несколько частот, однако в некоторых моделях, максимально возможная частота шины доступна только после обновления заводских настроек BIOS`a системы.

Теперь о встроенных звуковой и видеокарте в материнку. Как правило, такие модули не обладают высокой мощностью и производительностью, однако для повседневного прослушивания музыки и просмотра фильмов в обычном качестве, эти устройства подойдут. Если же нужно что-то по-мощнее, то лучше приобретать звуковую и видео карты по отдельности.

Процессор

Процессор является основным электронным устройством компьютера, которое отвечает за скорость обработки информации. Поэтому процессоры следует выбирать исходя из своих запросов и системных требований материнской платы. Только в этом случае компьютер будет быстро обрабатывать данные.

Существует множество производителей процессоров, однако первые позиции занимают процессоры компаний Intel и AMD. Система будет функционировать нормально если тип процессора и тип материнской платы совпадают. Если они различны, работоспособность системы может быть нарушена.

Основным системным средством быстродействия процессоров является его тактовая частота. Тактовая частота, это количество производимых компьютером операций в секунду времени. К примеру, если указанная частота процессора равна 2,9 Ггц, то это значит что «Камень» способен обработать 2 миллиарда 900 миллионов операций в секунду. Чем больше этот показатель, тем быстрее будет функционировать система.

Следующий критерий выбора это сокет процессора. Как правило, процессор выбирают уже под определенную материнскую плату, поэтому сокеты «материнки» и «камня» должны совпадать.

Кэш память это сверхбыстрый буфер процессора для хранения часто используемых данных. Процессор не может ждать пока оперативная память компьютера ответит ему на поставленные запросы, поэтому кеш является важным системным критерием при выборе процессора. Сам кеш имеет три уровня, обозначается английской буквой L. Так кеш первого уровня L1 является самым быстродейственным, хотя и самым малым по объему. Объем хранимых данных всего 16-128 Кбайт,L2 по объему больше, но по производительности медленнее,L3 самый большой по объему данных кеш. Он предназначается для просмотра фильмов или для игр со сложной графикой.

У процессора также есть системная шина FSB. Ее частота может достигать 1333 Ггц, это максимальное значение параметра. При выборе процессора под материнскую плату, необходимо сравнить показатели частоты этой шины у обоих устройств. Если значения параметра материнской платы не совпадают с показаниями параметров шины процессора, то лучше поискать другую материнскую плату либо другой процессор.

В качестве примера, можно взять материнскую карту со следующими параметрами: ASUS P8Z77-V Intel Z77 (Socket 1155; FSB 5000 МГц), 1xLGA1155, 4xDDR3 DIMM, 3xPCI-E x16, встроенный звук: HDA, 7.1, Ethernet: 1000 Мбит/с, форм-фактор ATX, DVI, HDMI, DisplayPort, USB 3.0.

Из этих параметров следует, что нам необходимо найти процессор с сокетом 1155 серии, с частотой системной шины процессора около 5000 МГц и построенного по технологии Intel. К этой материнской плате подходят процессоры 2-го и 3-го поколения Intel Core i7, i5, или i3.

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

Процессорная (иначе - системная) шина, которую чаще всего называют FSB (Front Side Bus), представляет собой совокупность сигнальных линий, объединенных по своему назначению (данные, адреса, управление), которые имеют определенные электрические характеристики и протоколы передачи информации.

Таким образом, FSB выступает в качестве магистрального канала между процессором (или процессорами) и всеми остальными устройствами в компьютере: памятью, видеокартой, жестким диском и так далее.

Непосредственно к системной шине подключен только CPU, остальные устройства подсоединяются к ней через специальные контроллеры, сосредоточенные в основном в северном мосте набора системной логики (чипсета) материнской платы.

Хотя могут быть и исключения - так, в процессорах AMD семейства К8 контроллер памяти интегрирован непосредственно в процессор, обеспечивая, тем самым, гораздо более эффективный интерфейс память-CPU, чем решения от Intel, сохраняющие верность классическим канонам организации внешнего интерфейса процессора.

Основные параметры FSB некоторых процессоров:

Intel Pentium III: 100/133; AGTL+; 800/1066
Intel Pentium 4: 100/133/200; QPB; 3200/4266/6400
Intel Pentium D: 133/200; QPB; 4266/6400
Intel Pentium 4 EE: 200/266; QPB; 6400/8533
Intel Core: 133/166; QPB; 4266/5333
Intel Core 2: 200/266; QPB; 6400/8533
AMD Athlon: 100/133; EV6; 1600/2133
AMD Athlon XP: 133/166/200; EV6; 2133/2666/3200
AMD Sempron: 800; HyperTransport; 6400
AMD Athlon 64: 800/1000; HyperTransport; 6400/8000

* Процессор: частота FSB МГц; тип FSB; теоретическая пропускная способность FSB Мб/с

Процессоры компании Intel используют системную шину QPB (Quad Pumped Bus), передающую данные четыре раза за такт, тогда как системная шина EV6 процессоров AMD Athlon и Athlon XP передает данные два раза за такт (Double Data Rate).

В архитектуре AMD64, используемой компанией AMD в процессорах линеек Athlon 64/FX/Opteron, применен новый подход к организации интерфейса CPU - здесь вместо процессорной шины FSB и для сообщения с другими процессорами используется:
высокоскоростная последовательная (пакетная) шина HyperTransport, построенная по схеме Peer-to-Peer (точка-точка), обеспечивающая высокую скорость обмена данными при сравнительно низкой латентности.

Драйвер AMD Radeon Software Adrenalin Edition 19.9.2 Optional

Новая версия драйвера AMD Radeon Software Adrenalin Edition 19.9.2 Optional повышает производительность в игре «Borderlands 3» и добавляет поддержку технологии коррекции изображения Radeon Image Sharpening.

Накопительное обновление Windows 10 1903 KB4515384 (добавлено)

10 сентября 2019 г. Microsoft выпустила накопительное обновление для Windows 10 версии 1903 - KB4515384 с рядом улучшений безопасности и исправлением ошибки, которая нарушила работу Windows Search и вызвала высокую загрузку ЦП.

Драйвер Game Ready GeForce 436.30 WHQL

Компания NVIDIA выпустила пакет драйверов Game Ready GeForce 436.30 WHQL, который предназначен для оптимизации в играх: «Gears 5», «Borderlands 3» и «Call of Duty: Modern Warfare», «FIFA 20», «The Surge 2» и «Code Vein», исправляет ряд ошибок, замеченных в предыдущих релизах, и расширяет перечень дисплеев категории G-Sync Compatible.

Шины, как известно, используются для передачи данных от центрального процессора к другим устройствам персонального компьютера. Для того, чтобы согласовать передачу данных к отдельным компонентам, работающих на своей частоте, используется чипсет – набор контроллеров, конструктивно объединенных в Северный и Южный мосты. Северный мост отвечает за обмен информацией с оперативной памятью и видеосистемой, Южный – за функционирование других устройств, подключаемых через соответствующие разъемы – жесткие диски, оптические накопители, а также устройств, находящихся на материнской плате (встроенная аудиосистема, сетевое устройство и др.), и для внешних устройств – клавиатура, мышь и т.д.

Схема системной платы показана ниже.


Для связи процессора с мостами используется шина FSB (Front Side Bus) (наиболее часто используемые в настоящее время Hyper-Transport и SCI), северный мост (иногда называемый системным контроллером) позволяет функционировать наиболее производительным устройствам – видеоадаптеру с помощью шины PCI Express 16x и оперативной памяти через шину памяти. Южный мост обеспечивает работу менее скоростных устройств, подключаемых с помощью карт расширения (аудиокарты, сетевые карты, видеокарты и т.д.) через шины PCI и шину PCI Express, оптических дисководов и жестких дисков через шины ATA (ранее называемых IDE, сейчас имеют название PATA (Parallel ATA) и более современные шины SATA. Еще более медленные устройства подключены к южному мосту через шину LPC – микросхема BIOS, мультиконтроллер для связи с внешними устройствами через последовательные и параллельные порты – клавиатурой, мышью, принтером и др.

Отметим, что в наиболее современных компьютерах функции северного моста выполняет центральный процессор (Intel Nehalem, AMD Sledgehammer).

В компьютере имеется несколько шин, по которым передаются данные. Основной является шина между центральным процессором и Северным мостом. О частоте этой шины можно прочитать в разделе о процессорах. Следующая шина имеется между процессором и оперативной памятью (раньше она была между Северным мостом и оперативной памятью). О ее характеристиках можно узнать из раздела об оперативной памяти. Остаются нерассмотренными шины, которые ведут к картам расширения, которые ниже и опишем.


Шина данных передает непосредственно данные, и чем больше она имеет линий, тем больше данных можно передать за один такт, поэтому число линий постоянно увеличивается. Для передачи данных внутри компьютера используются специальная шина, которая состоит из трех частей, по которым передаются данные, адреса, управляющие сигналы, а также заземление, напряжение и пр. То есть, практически данные передаются по трем частям: шина адреса, шина данных и шина управления. Число линий адресной шины определяет максимальное адресное пространство, куда можно пересылать данные, в основном, в оперативную память. Процессор 8086 имел 20 линий для адреса и мог адресовать 2 20 = 1 мегабайт памяти, в 286 имелось 24 линий (2 24 =16 мегабайт), в 386 – 32 линии (2 32 = 4 гигабайта), современные компьютеры имеют больше 32 линий. То есть, чем больше линий в адресной шине, тем большее количество оперативной памяти поддерживает материнская плата.

Шина данных передает непосредственно данные и чем больше имеет линий, тем больше данных можно передать за один такт. Поэтому число линий постоянно увеличивается, начиная от 8 в первых компьютерах до 32 в системах Pentium.

Через разъемы материнской платы, через вставляемые платы передается информация к/от процессора к внешним устройствам по отношению к материнской плате. Через эти разъемы, естественно, нельзя передавать больше данных, чем это поддерживает внутренняя системная шина, а обычно меньше, в зависимости от типа шины, с которой работают карты расширения. Существует несколько видов шин и, соответственно, разъемов: ISA, EISA, PCI и другие. В последних моделях компьютеров применяется в основном более производительная шина PCI-Е. Но довольно много устройств до сих пор работают с менее производительными шинами. Поэтому в современных материнских платах установлено до 5 различных шин и им соответствующим разъемам.

Рассмотрим более подробно имеющиеся шины.

Шина ISA (Industry Standart Architecture – промышленная стандартная архитектура) появилась давно и была долгое время стандартом. Сейчас она безнадежно устарела. Всего в первых моделях ХТ было 8 линий для данных, что позволяло передавать байт, 20 адресных линий для адресации до 1 мегабайта памяти, и еще 34 линии для других целей. При переходе на модель РС АТ были добавлены еще 36 линий, среди них 8 для данных и 4 для адреса. 8-разрядная использовалась еще в PC XT, имела 62 контакта и позволяла адресовать 1 Мб памяти. Далее появилась 16-разрядная (иногда называемая AT BUS), работает с частотой 8 Мгц со скоростью 16 Мб/сек, позволяет адресовать до 16 Мегабайт. Она состоит из двух частей, первая из них соответствует 8-разрядному слоту шины ISA. Дополнительные 8 разрядов используется для дополнительных адресов ввода/вывода и содержат 36 разъемов (поэтому можно устанавливать 8-разрядные карты в 16-разрядный слот). Однако данное устройство имело тактовую частоту 8,33 Мгц, работало медленно, поэтому появились другие шины.

В настоящее время работает стандарт Plug-an d-Play (PnP), который позволяет при установке нового устройства производить настройку автоматически. При этом система сама определяет вид устройства, адрес порта ввода/вывода, номер прерывания и канал прямого доступа к памяти (DMA). Однако старые шины с трудом позволяют использовать этот стандарт. Так, шина ISA была разработана до появления PnP. Поэтому не все устройства, которые подключаются к этой шине, могут автоматически конфигурироваться. Для выхода из существующей ситуации в системе Windows 9х имеется список устройств, которые можно подключать к компьютеру и которые сами устанавливаются.

Шина ISA имеет следующие ограничения :

Наличие 16-разрядной шины, то есть возможность одновременно посылать два байта;

Максимальная тактовая частота 8,33 МГц;

Отсутствие совместного использования прерываний и каналов DMA для нескольких карт в разных разъемах;

Отсутствие возможности программного отключения карты при конфликте устройств;

Отсутствие программного управления адресов порта ввода/вывода, линий прерываний и каналов прямого доступа.

Для установки карты ISA в шину EISA обычно нужно иметь конфигурационный файл, чтобы запустить утилиту конфигурации шины EISA, которая будет затем распределять ресурсы для карты.

При установке нового устройства нужно, чтобы оно было совместимо физически и логически. Под физическим совмещением подразумевается, что вид разъема, количество контактов у вилки и разъема должны совпадать друг с другом. Логическое совмещение означает, что должны быть четко определены контакты, по которым подается напряжение, где имеется заземление и т.д. При этом сигнал, посылаемый по одному контакту, должен быть идентифицирован принимающим устройством как сигнал пересылки данных, а не как управляющий сигнал. Все это определяется стандартом шины.

Данный стандарт устанавливается, как правило, производителем, который начал массовый выпуск новых устройств. К ним относятся шина ЕIDE для подключения жестких дисков, последовательный и параллельный порт, шина для вывода графических изображений, шина для подключения карт расширений, шина USB, IrDA и пр., которые имеют свои стандарты. Однако на практике часто под понятием шины обозначают шину, к которой подключается плата расширения. Поэтому в этой книге и дальше просто шина будет называться шина PCI, VESA и т.д. В заключение отметим, что первые шины для компьютера назывались Multibus1 . Они выпускались в двух вариантах: PC/XT bus и PC/AT bus и имели 7 линий для аппаратных прерываний. В дальнейшем их вытеснила шина ISA.

Шина МСА (Microchannel - микроканал) появилась в 1987 году, разработана компанией IBM и установлена на компьютере PS/2 ISA. Имеется два вида: 16- и 32-разрядная. 32-разрядная работает с частотой 10 Мгц, со скоростью передачи данных до 20 Мб/с, позволяет адресовать до 4-х гигабайт. Карта расширения могла быть самостоятельно распознана и автоматически конфигурирована компьютером. Основным недостатком является несостыковка с шиной ISA, для которой были разработаны основные устройства, поэтому данная архитектура не нашла широкого распространения.

Шина EISA (Extended ISA - расширенная ISA ) выпущена группой конкурирующих с IBM фирм в 1988 году, так как шина МСА имела закрытое описание и ее могла использовать только компания IBM , также уже устарела. К достоинствам нужно отнести ее совместимость с разъемом ISA за счет расположения разъемов в два слоя, на одном ISA, на втором - EISA. Данная шина 32-разрядная, работает с частотой 8,33 Мгц и дает максимальную скорость передачи данных до 33 Мб/с. Конфигурация устанавливается программно, а не при помощи переключателей.

Чтобы при установке карты, требующей разъем ISA, не были замкнуты два слоя, в разъеме имеется заглушка, которая не позволяет соединиться с нижними контактами. Карта EISA содержит в месте заглушки вырез, который позволяет миновать эту заглушку.

Ввиду дороговизны шина EISA не получила широкого применения в персональных компьютерах, но использовалась в рабочих станциях и серверах.

Шина SCSI (Small Computer System Interface – небольшой системный компьютерный интерфейс) разработан для подключения к шине больших массивов устройств, таких как, жесткие диски, оптические накопители, стримеры, принтеры и пр. Поэтому используется в основном в серверных компьютерах или компьютерах с системой RAID . В домашних компьютерах практически не используется.

SCSI-1 появилась в 1986 году, имела 8 линий для передачи данных, каждое устройство со своим номером, причем адаптеру присвоен номер 7. Остальные устройства имеют номер от 0 до 6, причем номер устанавливается вручную на задней стороне подключаемого устройства или при помощи перемычек. Устройства на шине могут обмениваться между собой информацией без участия адаптера, который в этом случае определяет, кто кому может передавать данные. В то же время, когда информация проходит через него, он принимает в этом участие. Частота шины – 5 МГц, максимальной число подключаемых устройств – 8.

Fast SCSI появилась в 1991 г. и имела 8 линий для передачи данных, а также улучшенный кабельный разъем. Частота шины – 10 МГц, пропускная способность – 10 Мбайт/сек, максимальной число подключаемых устройств – 8.

Wide SCSI имела 16 линий для передачи данных, частоту шины – 10 МГц, пропускную способность – 20 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra SCSI появилась в 1992 году, имела 8 линий для передачи данных, частоту шины – 20 МГц, пропускную способность – 20 Мбайт/сек, максимальной число подключаемых устройств – 4-8.

Ultra Wide SCSI имела 16 линий для передачи данных, частоту шины – 20 МГц, пропускную способность – 40 Мбайт/сек, максимальной число подключаемых устройств – 4 - 16.

Ultra 2 SCSI появилась в 1997 году, имела 8 линий для передачи данных, частоту шины – 10 МГц, пропускную способность – 40 Мбайт/сек, максимальной число подключаемых устройств – 8.

Ultra 2 Wide SCSI имела 16 линий для передачи данных, частоту шины – 40 МГц, пропускную способность – 80 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra 3 SCSI имела 16 линий для передачи данных, частоту шины – 40 МГц, пропускную способность – 160 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra -320 SCSI имела 16 линий для передачи данных, частоту шины – 80 МГц, пропускную способность – 320 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra -640 SCSI появился в 2003 году, имела 16 линий для передачи данных, частоту шины – 160 МГц, пропускную способность – 640 Мбайт/сек, максимальной число подключаемых устройств – 16.

В дальнейшем стала развиваться технология SAS (Serial Attached SCSI ) для работы с жесткими дисками и ленточными накопителями. К разъему SAS можно подключить устройства SATA , но не наоборот. Обеспечивает пропускную способность 1.5, 3.0, 6.0 Гбит/сек, ожидается 12 Гбит/сек. Позволяет подключать не только накопители в 3.5 дюйма, но и 2.5 дюйма.

Сам адаптер располагается на материнской плате (как у макинтоша) или на карте расширения. Карта вставляется в слот PCI. У кабеля устройств SCSI компьютеров Мак имеется розетка с разъемом DB25, таким же, как и для параллельного порта. Если его случайно подключить к принтеру или параллельному порту компьютеру или, наоборот, подключить принтерный кабель к устройству SCSI, то могут выгореть микросхемы устройства, к которому они подключены.

При передаче данных по кабелю в нем может возникнуть так называемая «стоячая волна». Чтобы ее не было, применяется специальная заглушка, которая ее гасит. Причем эта заглушка должна быть одна и находиться на конце кабеля. SCSI устройства могут иметь два разъема, один из которых подключается к SCSI шине, а на втором, если он находится на конце кабеля, должна быть заглушка. Если имеется две заглушки на двух устройствах на линии, то они могут мешать друг другу выполнять свою роль.

Шина SCSI несколько по-иному работает с жесткими дисками, нежели другие стандарты, рассматривая диск не как записи, имеющие головки, цилиндры, сектора, а как последовательность логических записей. Получая от центрального процессора информацию для жесткого диска о записи по определенному адресу, адаптер SCSI переводит ее в номер логической записи. В результате, если жесткий диск поставить на место любого SCSI устройства данного адаптера, он будет работать, но если установить в другие адаптеры, то система может не прочитать данные о приведении диска к новой структуре, вся информация на диске будет уничтожена.

Другие устройства (оптические накопители, Iomega) имеют специальные драйверы, при которых можно свободно перемещать их из одной системы в другую. В одном компьютере можно использовать как устройства, подключенные к адаптеру SCSI, так и EIDE одновременно.

Устройства SCSI требуют на конце кабеля, который их соединяет, оконечной нагрузки. Как правило, она на заводе устанавливается на каждое из устройств. Поэтому при установке всех устройств, кроме последнего, нужно их снять. Если устройства, подключаемые к шине SCSI, не поддерживают стандарт Plug & Play, то на них нужно установить при помощи перемычек номер устройства. При этом нужно иметь в виду, что некоторые адаптеры требуют, чтобы устройства с номером 0 и 1 были жесткими дисками.

Шина EIDE предназначается для подключения жестких дисков и оптических накопителей. Также называется как ATA или РАТА (параллельная АТА). Сейчас вытесняется шиной SATA , но, тем не менее, устанавливается и на современных платах, так как к нему можно подключить несколько оптических накопителей (два на каждый разъем). Более подробно это рассмотрено в пункте о жестких дисках. Первые дисководы подключались к компьютеру при помощи карт, на которых находился контроллер диска. Со временем, когда размеры микросхем уменьшились, контроллер стали устанавливать на жестком диске, а контроллер гибких дисков - на материнской плате, поэтому появилась возможность подключать жесткие диски непосредственно через разъем на материнской плате.

Так появилась шина IDE, являющаяся частью шины ISA, которая выведена на специальный разъем (в современных устройствах два разъема) на материнской плате. Сначала был разработан стандарт работы шины под названием АТА, затем ATAPI, который позволял работать с оптическими накопителями. Со временем появился расширенный вариант EIDE со стандартом АТА и в дальнейшем расширение стандарта - ATAPI. Если устройств, подключаемых к разъему EIDE, больше, чем может поддержать компьютер, то требуется установить специальную карту, к которой можно подключить еще несколько устройств.

Первые стандарты использовали жесткие диски, подключавшиеся к плате при помощи специальных карт, на которых размещался контроллер, к шине ISA. Со временем размеры электронных компонентов сократились и они стали устанавливаться на самом жестком диске. Далее диски стали подключаться к плате через соединитель IDE, затем появились два разъема, причем к каждому из разъемов можно было подключить до двух устройств, увеличилось быстродействие, была введена адресация логических блоков, появилась возможность подключения оптических накопителей и все это поддерживалось стандартом EIDE, которая работает с тактовой частотой 8,33 Мгц. Первые устройства работали со стандартом АТА, а затем ATAPI, которые позволили подключать к каналу оптического устройства. Так как по каналу стало возможно передавать за один такт 2 байта одновременно, по этим же линиям скорость передачи достигла 16,6 мбайт/сек. Со временем данные передавались за один такт не только при переходе с высокого напряжения на низкое, но и при переходе с низкого на высокий. Этот стандарт называется Ultra ATA или АТА33, так как позволяет передавать данные со скоростью 33,3 мбайт/сек.

Позже появился стандарт АТА66, в котором увеличилась тактовая частота в канале до 16,7 Мгц и передача данных происходит со скоростью 66,7 мбайт/сек. Кабель для подключения жесткого диска к материнской плате уже другой и содержит 80 проводов вместо 40, как было у предыдущих стандартов. Для подключения устройств к этому кабелю используется 40 проводов. Если подключить устройство, способное работать в АТА33, к этому каналу, или устройство, работающее со стандартом АТА66, к шине АТА33, то устройство будет работать со скоростью 33,3 мбайт/сек. В некоторых платах АТА и его расширение АТАРI позволяет подключать устройства с разными скоростями к одной шине без снижения производительности, но лучше все-таки разделить их на разные каналы.

Кабель для работы со стандартом IDE АТА (AT-Bus) – 16-битный, имеет 40 жил. Кабель XT IDE (8 бит) имеет также 40 жил, но не совместим с АТА, то есть его нельзя использовать для стандарта IDE.

Существует два режима работы канала DMA: Singleword и Multiword. Singleword DMA имеет mode 0, которая работает со скоростью 2.08 мб/сек., mode 1 – 4.16, mode 2 – 8.33, а Multiword DMA имеет mode 0, работающий со скоростью 4.12, mode 1 – 13.3, mode 2 – 16.6 мб/сек. Режим Ultra DMA имеет mode 0, работающий со скоростью – 16.6, mode 1 – 25, 2 – 33.

Кроме того, существуют другие режимы PIO, от 0 и выше, и чем больше номер, тем быстрее работает шина.

Режим АТА-2 работает в PIO Mode 3 multiword DMA Mode 1, поддерживает LBA и CHS. Fast ATA -2 поддерживает Multiword DMA mode 2 и PIO mode 4. АТА3 - это расширение АТА2 с Smart, то есть улучшает потребление питания. АТА/ATAPI-4 - расширение АТА3, имеет Ultra DMA, интерфейс ATAPI. E-IDE поддерживает PIO mode3, с multiword DMA mode 1 и работает с LBA и CHS. Для Ultra DMA нужен 80-жильный кабель с разъемами на 40 контактов с экранированием. Стандарт IDE Mastering позволяет внешнему устройству управлять системной шиной для передачи данных без управления шиной процессора, однако использование такой шины позволяет избавиться от проблем с распределением каналов DMA и ограничения возможностей. В частности, работает с 8- или 16-разрядными данными. Далее появились режимы работы АТА-3 (другое название EIDE ), АТА-4 (частота 16.7, 25, 33.3, другое название Ultra ATA /33), АТА-5 (частота 66 МГц, другое название Ultra ATA /66), АТА-6 (частота 100 МГц, другое название Ultra DMA 100 или UDMA 5 (100)), АТА-7 (частота 133 МГц, другое название Ultra DMA 133 или UDMA 6 (133)), АТА-8 (в развитии).

Шина VESA (Video Electronics Standard s Assoсiation - Ассоциация видео-электронных стандартов или VL -BUS или VLB или VESA local bus ) устарела, первой появилась после шины ISA и имела вчетверо большую скорость, чем ISA, однако она имела некоторые ограничения, в частности, можно было иметь только 2-3 разъема, что, несомненно, уменьшало возможность компьютера. Она представляет собой шину для подключения дисплея, но может быть использована и для других устройств, не является расширением шины ISA (как предыдущие шины). Данная карта напрямую связана с шиной CPU, обходя системную шину. Работает с частотой системной шины до 66 Мгц, использовалась в основном с 486, иногда с 386 компьютерами для видеоплат и жестких дисков. Для Pentium вышла новая версия 2.0, но широкого распространения не получила и в настоящее время практически не используется.

Шина PCI (Peripheral Component Interconnect - соединение периферийных компонентов) также не основана на шине ISA и является вполне самостоятельной, синхронной шиной, разработана компанией Intel, первые версии работали с частотой 33 Мгц, имела 32-битный (или 64-битный) канал и является независимой от центрального процессора, то есть позволяет передавать данные в то время, когда процессор занят другими вычислениями. Теоретическая пропускная способность шины была 133 Мбайт/сек, реально – 80 Мбайт/сек. Эта шина до сих пор имеет широкое распространение.

Шина PCI начала разрабатываться в одно время с шиной ISA, но была закончена позже. У шины PCI больше линий для передачи данных, чем в ISA, и работает она быстрее, чем ISA, причем общее число контактов в разъеме - 124. Шина позволяет выявить ошибки при передаче данных и работает без заглушки кабеля. Кроме того, позволяет при установке конфигурировать подключаемое устройство, то есть при этом компьютер считывает информацию из памяти устройства, где хранятся его основные параметры. Шина может работать не только с определенным набором микросхем на материнской плате, но и с разными устройствами, а также в других видах компьютеров. Кроме того, шина PCI способна использовать совместно прерывания и каналы DMA для разных устройств, что послужило толчком к ее активному внедрению, тогда как шина ISA не могла этого обеспечить.

В разъем шины PCI можно подключать карты: имеющие питание в 5 в (ключ 50, 51 контакт), 3.3В (ключ 12,13) и универсальный (ключ в 12, 13, 50, 51 контактах). 32-битный слот имеет по 62 контакта с каждой стороны, 64-битный – 94. Данная шина позволяет подключить до четырех устройств одновременно, то есть может иметь до четырех разъемов. Для использования большего количества подключаемых устройств применяется специальная микросхема - мост шины, для соединения двух шин. Для устройств промышленного использования имеется стандарт Compact PCI с 8 разъемами.

Пока разрабатывалась шина PCI, развивались и другие отрасли. Возросла тактовая частота внутренней шины до 100, 150 и выше Мгц, увеличилось число линий передачи данных до 64 и продолжает увеличиваться, однако тип шины PCI остался 32-разрядный, но в дальнейшем шина PCI также будет развиваться.

У каждого слота имеется 256 восьмибитных регистра, где содержатся конфигурационные параметры. После включения питания компьютера происходит запрос на конфигурирование шины во время выполнения программы Post, после установки параметров шина может производить операции ввода/вывода. Основное преимущество шины заключается в том, что передача данных происходит без задействования центрального процессора, то есть во время передачи данных от одного устройства к другому центральный процессор может заниматься своими задачами.

Шина PCI 1.0 – 32-разрядная с полосой пропускания 132 Мб/с, с адресацией до 4 гигабайт, а PCI 2.0 - 64-разрядная с полосой пропускания 528 Мб/с. Данная шина приспособлена для технологии Plug&Play, то есть конфигурация плат происходит программно. Для промышленного применения используется стандарт Compact PCI, в котором можно устанавливать до восьми устройств одновременно.

Разрешение конфликтов прерываний в шине PCI обеспечивается за счет того, что шине предоставляется возможность обслуживать обработку каждого из устройств по очереди. Шина PCI обеспечивает 32 линии данных при тактовой частоте 33 Мгц, затем стала 64-разрядной, с тактовой частотой 66 Мгц, причем в новый вариант шины можно вставлять старые платы PCI, а также новую карту в старый разъем. Более новые версии PCI могут увеличивать тактовую частоту и позволяют использовать старые карты расширений для их работы, а также устанавливать новые платы в старые разъемы.

Шина AGP (Accelerated Graphics Port - ускоренный графический порт) разработана компанией Intel в 1997 году специально для работы с видеокартой, при частоте 66 Мгц имеет 32-разрядную шину данных. В настоящее время вытеснена шиной PCI -E . Шина позволяет использовать конвейеризацию обращений, то есть посылать данные в виде непрерывных пакетов. В шине PCI посылается предыдущее данное и адрес для следующего данного, после чего происходят временные задержки, а в шине AGP посылаются несколько адресов и несколько данных один за другим, что уменьшает задержки. Имеется возможность постановки в очередь до 256 запросов и поддерживать две очереди для операций чтения/записи с высоким и низким приоритетом. Сдвоенная передача, то есть передача за один такт двух данных вместо одного, позволяет иметь пропускную способность при частоте 66 Мгц до 528 Мбайт/сек. Позволяет работать на частоте до 100 Мгц и выше с более высокой пропускной способностью. Учетверенная передача позволяет передавать до 1 056 Мбайт/сек.

Для шины AGP существует несколько стандартов: AGP 1Х, 2Х, 4Х, Pro и 8Х. Большинство карт работает со стандартом 4Х и 8Х. В оперативной памяти хранятся не только части изображения, но и графические текстуры. Чтобы видеосистема могла обращаться только к тем областям памяти, которые ее касаются, используется специальная таблица GART (Graphics Address Remapping Table – графическая таблица переадресации адресов), которая определяет эти области памяти.

В шине имеется возможность для видеопроцессора обращаться непосредственно к участкам оперативной памяти, так же как и к видеопамяти, и обрабатывать там текстуры в режиме DiMe (Direct Memory Execution), при этом адресация одинакова. Шина применяется для процессоров Pentium Pro, Pentium II, Pentium III и Pentium IV , но может работать и с процессорами Pentium.

SATA (Serial ATA ) является развитием интерфейса IDE . Ее особенностью является не параллельная передача данных, а последовательная, что хотя и медленнее, но позволяет использовать более высокие частоты без необходимости синхронизации сигнала. Первый стандарт SATA 1.x мог работать на частоте 1.5 ГГц с пропускной способностью 1.2 Гбит/сек (потери за счет передачи большого количества служебной информации). Стандарт 2.х работает на частоте 3 ГГц с пропускной способностью до 2.4 Гбит/сек и стандарт 3.0 на частоте 6.0 Гбит/сек, с пропускной способностью 4.8 Гбит/сек.

Для подключения устройств внутри системного блока, они подключаются к информационному разъему с 7 контактами SATA на материнской плате и 15-разъемным кабелем питания к блоку питания. Существуют устройства, которые позволяют подключить как 15 разъемный кабель, так и 4 разъемный кабель электрического питания Molex . Нужно иметь в виду, что подключение двух кабелей одновременно может сжечь устройство.

Существуют переходники с SATA на IDE и обратно.

eSATA (External SATA – внешний SATA ) предназначен для подключения устройств в режиме горячей замены, то есть, при включенном компьютере. Для того, чтобы можно было это сделать в Windows XP нужно установить драйвер AHCI . Был создан в 2004 году. Имеет разъем, аналогичный SATA , но добавлено экранирование разъема. Поэтому не совместим с разъемом SATA , так как электрически совместимы, а физически нет. Длина кабеля увеличена до 2 метров (1 метр у SATA ).

Существует совмещенный разъем eSATA +USB = Power eSATA , который имеет не только информационные линии, но и линии питания.

PCI - E (или PCI Express или PCI -E ) появилась в 2002 году, использует связь между устройствами типа звезда, позволяет горячую замены устройств. Существует несколько вариантов х1, х2, х4, х8, х12, х16, х32, которые имеют разные разъемы. Чем меньше число, тем меньше контактов и меньше длина разъема. Устройства, которые предназначены для разъема х8 можно подключать в разъемы с числом большим, в данном случае, х12, х16, х32. Это правило применяется для других видов.

Имеется три стандарта. Стандарт 1.0 позволяет передавать в одну сторону для х1 - 2 Гбит/сек, в двух направлениях – 4 Гбит для х1. Пропускная способность других видов можно рассчитать умножив вышеуказанную цифру на число в названии. Например, для х16 пропускная способность в одном направлении составляет 2 х 16 = 32 Гбит/сек. Стандарт 2.0 вышел в 2007 году, имеет пропускную способность в одном направлении (в двух направлениях удвоенную) для х1 – 4 Гбит/сек. Также можно вычислить пропускную способность для других видов. Стандарт 3.0 вышел в 2010 году, позволяет передавать данные со скоростью 8 Гбит/сек. Стандарт 4.0 планируется выпустить к 2015 году и он будет в два раза быстрее, чем 3.0.

В настоящее время на материнских платах наиболее распространены х16 для подключения видео карт и х2 для подключения других устройств.

Шина USB (Universal Serial Bus - универсальная серийная шина) предназначена для подключения периферийных устройств (например, клавиатуры, мыши, джойстика, принтера и других). Ее миссия – подключение различных устройств к работающему компьютеру, например, тостеров, клавиатуры, микроволновой печи, светодиодных светильников, вентиляторов и пр., без необходимости устанавливать переключатели, перемычки, использовать для этого матобеспечение (драйверы) и пр.

Первый стандарт 1.0 появился в 1994 году и имеет режим с низкой пропускной способностью в 1.5 Мбит/сек (Low speed ), с высокой пропускной способностью (Full-speed) до 12 Мбит/сек. Шина USB может работать в двух режимах: в низкоскоростном, в котором работает клавиатура, мышь и т.д., с небольшой скоростью передачи (длина кабеля – 5 метров) и высокоскоростном режиме (длина кабеля – 3 метра), что позволяет работать с максимальной скоростью принтера.

В версии 1.1 были исправлены имеющиеся ошибки.

В стандарте 2.0 появился новый режим (Hi -speed ) c пропускной способностью 25480 Мбит/сек.

В этой шине можно подключать устройства, а компьютер сам определит устройство, которое подключено. При этом имеется возможность не только подключить новое устройство непосредственно к компьютеру, но и к устройству, которое уже подключено к компьютеру. Например, к клавиатуре можно подключить жесткий диск, микрофон и прочие устройства.

Она может использовать концентратор, к которому можно подключить до 127 устройств, поддерживает технологию Plug&Play. При этом шина автоматически присваивает номер для устройств, с которым оно работает. По этим проводам, помимо пересылки данных, передается и электроэнергия, но в небольшом количестве, которого хватает для клавиатуры, но может быть недостаточно для динамиков. Поэтому динамики с большой выходной мощностью требуют отдельного электропитания.

Шина позволяет подключать устройства при включенном компьютере. При подключении они запрашивают главное устройство, которое назначает им адреса, после чего они могут начинать работать. Помимо данных, передается также и электроэнергия, которая служит для питания устройств. Если электроэнергии недостаточно, то устройства можно подключить к дополнительному источнику питания.

Помимо увеличения производительности компьютера, необходимость в модернизации может возникнуть при добавлении новых устройств, для чего требуется соответствующая мощность блока питания, определенное количество и тип разъемов для плат расширения на материнской плате и количество свободных отсеков внутри системного блока. Со временем, при распространении стандарта USB, многие устройства, которые в настоящее время можно будет подключать, расположены не внутри, а вывести их вне системного блока. Таким образом, все больше и больше будет выпускаться внешних устройств и количество разъемов внутри корпуса и отсеков не будет являться проблемой при установке большого количества дополнительных устройств.


Последний стандарт USB 3.0 появился в 2008 году, разъемы совместимы с более ранними стандартами. Однако добавлены еще четыре линии связи в виде двух витых пар и сам кабель стал толще. Разъемы на материнской плате для подключения таких кабелей стали синего цвета, и сами штекеры имеют вставки синего цвета. Таким образом была повышена максимальная скорость передачи данных до 4,8 Гбит в секунду, а скорость передачи выросла до 600 Мбайт в секунду (показатель выше, чем у стандарта USB 2.0 в десять раз). Одновременно повысилась сила пропускаемого тока с 500 мА до 900 мА, что позволяет подключить более энергоёмкие устройства.

Шина PCMCIA используется в ноутбуках и имеет возможность передавать данные по 16 разрядам с адресацией до 64 Мегабайт, с частотой шины 33 мегагерц. Данная шина позволяет подключать разные устройства - жесткие диски, модемы, расширители памяти и др. Многие адаптеры выпускаются по технологии РnР и имеют возможность подключать устройства, не выключая компьютер. Все устройства, подключаемые к данному разъему, имеют пониженное энергопотребление. Шина имеет большие перспективы в будущем и будет устанавливаться и в настольных компьютерах.

Карты PCMCIA, называемыя также РС картой, предназначены для оперативной памяти, модемов, жестких дисков и пр. устройств и бывают трех видов. Они имеют длину и ширину 85х54 мм, а толщина зависит от типа. I тип имеет толщину 3,3 мм, II тип - 5 мм, III тип - 10,5 мм. Карта вставляется в разъем шины ISA, приспособленной для этих карт, которая также называется PCMCIA.

Тип I используется для оперативной памяти, иногда для модемов или сетевой карты, обладает 16 разрядным интерфейсом, толщина 3.3 мм, тип II для этих же устройств, но они потолще (5 мм), в тип III можно установить также жесткий диск (толщина 10,5 мм). В ноутбуке есть отсек, куда можно установить либо одну карту типа I или II, либо в современных моделях - две карты типа I и II или одну типа III.

Для модема на конце карты установлен специальный разъем (X-jack) к которому подключается провод, на другом конце имеется телефонный разъем (RG11) для подключения к телефонной линии. При установке нужно просто вставить карту в отверстие до щелчка, а для того, чтобы вынуть, нужно нажать на рядом расположенную клавишу, и карта выскочит наружу. PC Card AT называется разъем PCMCIA для подключения к блокнотным и стационарным компьютерам.

Card Bus является дальнейшим развитием РС Card, которые передают данные через 32-разрядный интерфейс (карты PCMCIA стали называть РС Card). Шина соединяет карту с системой видеоизображений, что позволяет миновать шину ISA. Эта шина называется Zoomed Video Port – порт увеличенного видео.

IEEE 1394 – разработана Институтом инженеров по электротехнике и электронике (IEEE – Institute of Electrical and Electronics Engineers ) на основе шины компании Apple – FireWire в 1995 году, где номер 1394 обозначает порядковый номер шины, которая разработана данной организацией. Шина позволяет подключить до 16 устройств к одному узлу, при этом каждому устройству присваивается номер, который имеет размерность 16 бит, то есть всего можно адресовать более 64 000 устройств. К каждой шине подключается до 63 устройств, при этом каждому узлу присваивается номер, состоящий из 6 бит. Между собой можно соединить 1023 шины при помощи мостов, каждая из которых имеет разрядность 10 бит, в шине возможна «горячая замена». Каждое новое устройство может быть подключено к любому свободному порту, на одном аппарате их бывает от одного до трех, но возможно - до 27. Единственное исключение заключается в запрете организации петель устройств, так как шина поддерживает древовидную структуру.

Существует три класса устройств с передачей данных 98,3; 196,6 и 339,2 Мбит/сек, или их обычно округляют до 100, 200 и 400 Мбит/сек.по стандарту IEEE 1394a и 800 и 1600 по стандарту IEEE 1394b . По стандарту IEEE 1394.1, разработанному в 2004 году, можно подключать до 64 449 устройств, по стандарту IEEE 1394с, разработанному в 2006 году, можно использовать кабель от сети Ethernet . При этом максимальная длина кабеля составляет до 100 метров, а скорость до 800 Мбит/сек.

Существует три вида разъема: 4 pin – без питания, устанавливается на ноутбуках и видеокамерах, (IEEE 1394a без питания), 6 pin –с дополнительными двумя контактами для питания (IEEE 1394a) и 9 pin с дополнительными контактами для приема и передачи (IEEE 1394 b). Также может быть разъем RJ -45 (IEEE 1394с) .

Если кабель состоит из 6 медных проводов, два на питание, остальные две пары для данных, причем каждая пара экранирована и также экранированы все провода вместе. Так как обеспечивается электропитание от 8 до 40 вольт при токе до 1,5 ампер, то многие устройства не требуют дополнительного подключения к сети. Между двумя устройствами можно установить кабели до 4,5 метров, разъемы шин простые, с возможностью легкого подсоединения.

Шина работает в синхронном и асинхронном режимах. При асинхронной передаче отправляются данные, организованные в пакеты, и при возникновении ошибок передача повторяется, что важно для точной передачи данных. Синхронная передача используется в мультимедиа, для передачи звуковых и видеоданных, но если данные пропали, то это не критично, так как производится передача следующей порции данных.

Шина IEEE 1394 передает данные в цифровом виде, поэтому качество видеоизображения лучше по сравнению с аналоговым. Компьютер может программным образом включать и выключать устройства, подключенные к нему. Шина является независимой от компьютера, то есть возможна её работа при отсутствии компьютера, например, для передачи данных от видеокамеры к видеомагнитофону. Данную шину поддерживает Windows 98 (нужно обновление), Windows МЕ, Windows 2000, Windows ХР и другие.

Для ускорения работы была введена хост-шина (иногда называемая шиной процессора). Предназначена для передачи данных с 64-разрядностью между процессором, оперативной памятью и кэш-памятью 2-го уровня и работает с частотой 50, 60, 66, 75, 100, 133 Мгц, в то время как шина PCI - с половинной частотой (25; 30; 33; 37,5 Мгц).

Эксплуатация . Если одна из старых карт перестала работать, то можно попробовать ее снять и прочистить контакты обыкновенным ластиком, который удалит налеты и окись. После установки проверьте работу платы. Неиспользуемые слоты желательно закрыть специальными крышками.

© 2024 sukko-kurort.ru
Windows. Драйверы. Ликбез. Социальные сети. Software. Server